QGP Brick: What to do next? - Redesign comparison schemes - ΔE Scheme: - Keep $\Delta E/E = \int dx \times P(x)$ fixed - Intuitive, but overemphasizes poorly controlled $x \rightarrow 1$ region • R scheme: $$R(p) = f(p)^{-1} \int dx dz f\left(\frac{p}{(1-x)z}\right) D(z) P(x) \longrightarrow \int dx \rho(x) P(x)$$ $f(p) \sim p^{-n} \longrightarrow \rho(x) \sim (1-x)^n \int dz z^n D(z)$ - Strongly weights x→0 region - Compare directly R_{AA} with correct hadronization ## WHDG and AMY are directly comparable: - \blacktriangleright Calculations can be done for same E, L,T, α_s . Compare the same observables in the same figure. - Make sure that apples are compared with apples: gluon medium only, check whether groups agree on q-hat (i.e. λ and μ^2). ## • WHDG and ASW are directly comparable: - \blacktriangleright Calculations can be done for same E, L, α_s . - \blacktriangleright Compare in ΔE and in R schemes, and after R_{AA} after fragmentation. - \blacktriangleright Compare q-hat leading to same ΔE , R. - ▶ Compare R for same q-hat. - Explore, if x(1-x) kinematic constraint can be implemented in ASW. ## HT, AMY and WHDG are comparable: - \blacktriangleright Calculations can be done for same E, L, α_s , q-hat. - ▶ Compare R_{AA} after fragmentation. - Fix R_{AA} and compare q-hat for same E, L, α_s .